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Multiplicative cascades applied to PDEs
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Abstract

Numerical approximations to the Fourier transformed solution of partial differential equations are obtained via Monte
Carlo simulation of certain random multiplicative cascades. Two particular equations are considered: linear diffusion equa-
tion and viscous Burgers equation. The algorithms proposed exploit the structure of the branching random walks in which
the multiplicative cascades are defined. The results show initial numerical approximations with errors less than 5% in the
leading Fourier coefficients of the solution. This approximation is then improved substantially using a Picard iteration
scheme on the integral equation associated with the representation of the respective PDE in Fourier space.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic processes have been found to have important connections to deterministic partial differential
equations (PDEs), most notable being the relationship between the linear diffusion equation and Brownian
motion through the Feynman–Kac formula (e.g. see [1,12]). In later developments, probabilistic representa-
tions have been found to solutions of semilinear and quasilinear equations. Important examples include the
well-known example by McKean [2] for the solution to the KPP equation as the expected value of a functional
of branching Brownian motion, and more recently the work in [3], where the solution to the incompressible
Navier–Stokes equations is written in terms of a jumping and branching Brownian motion.

In each of the three works cited above, the solution to the PDE is represented as the expected value of a
functional acting on the sample paths of certain stochastic process evolving in physical space. This paper deals
with the analogous idea in Fourier space, along the lines of the method introduced in [9] for the Navier–Stokes
equations. Namely, multiplicative functionals of tree-like stochastic models are used to give probabilistic
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representation of the Fourier transform of the solution to the PDE. Two particular examples are considered:
simple linear diffusion with a potential and viscous Burgers equation. Further restrictions are imposed to the
Fourier transform of the data in each PDE to achieve the probabilistic representation.

The main emphasis is on the design of Monte Carlo simulation schemes to numerically approximate the
solution of each PDE in Fourier space. The initial approximations are further improved by means of numer-
ical Picard iteration.

In order to fix the main ideas of the methods used in subsequent sections of this paper, consider the simple
example of the diffusion equation with Fickian flux and a sink term of constant rate c > 0,
ut ¼ uxx þ cu; t > 0; uð0þÞ ¼ u0. ð1Þ

Feynman–Kac�s formula gives the following explicit probabilistic representation of the solution u in physical
space,
uðt; xÞ ¼
Z 1

�1
e�ct 1ffiffiffiffiffiffiffi

2pt
p e�

1
2tðx�yÞ2u0ðyÞ dy ¼ Exf1½S>t�u0ðBtÞg; ð2Þ
where B = {Bt:tP 0} is a standard Brownian motion and S is an exponentially distributed random variable
independent of B, namely PðS > tÞ ¼ e�ct; t > 0. The symbol Ex denotes expectation conditioned to the event
[B0 = x] and 1[S > t] denotes the indicator function of the event [S > t], i.e., 1[S > t] is 1 or 0 depending on wether
[S > t] occurs or not.

The probabilistic representation in (2) helps create a very clear and intuitive physical picture of the solution
to the PDE: for t > 0, particles initially distributed according to u0, start moving (diffusing) following the paths
of B and are ‘‘killed’’ at a random time S; u(x, t) is the expected fraction of surviving particles that occupy the
point x at time t.

A generalization of the example (1) will be revisited in Section 2, but in contrast to the description above,
the solution is now represented probabilistically in Fourier space. Namely, the Fourier transform of u
ûðt; nÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

e�ixnuðt; xÞ dx;
which from (1) satisfies
ûtðt; nÞ ¼ �n2ûðt; nÞ þ cûðt; nÞ; t > 0; ûð0þÞ ¼ û0; ð3Þ

is expressed as the expected value of a functional of some process that takes values in time-frequency space.

The problem in (3) can be solved exactly in a variety of ways. One non-obvious method that illustrates the
main ideas used in this paper is outlined below.

Multiply both sides of (3) by en
2t and integrate on (0, t) to get,
ûðt; nÞ ¼e�n2t û0ðnÞ þ
c

n2

Z t

0

n2e�n2sûðt � s; nÞ ds; ð4Þ

¼E û0ðnÞ1½S0>t� þ
c

n2
ûðt � S0; nÞ1½S0<t�

� �
; ð5Þ
where S0 is an exponentially distributed with
PðS0 > tÞ ¼ e�n2t. ð6Þ

The goal is now to use (5) to construct a stochastic model s and a functional X = X(s) such that
ûðt; nÞ ¼ EXðsÞ. ð7Þ

Consider a root vertex Æ0æ. Assign to it a frequency (or type) n, and compare a realization of the random time
S0 to the termination time of Æ0æ denoted by T0 = t. In the event that S0 P t, the process stops and the mul-
tiplier M0 = u0(n) is assigned to Æ0æ. If S0 < t, a new vertex Æ1æ of s is created. In this example, the frequency of
the vertex Æ1æ remains equal to n, i.e., is selected according to the Dirac delta distribution dn. The respective
multiplier is M1 ¼ c

n2
. The construction of s is continued by generating an exponential time S1 independent of,

and with the same distribution (6), as S0. The termination time of the vertex Æ1æ is set to T1 = t � S0.



124 J.M. Ramirez / Journal of Computational Physics 214 (2006) 122–136
Let N be the number of vertices in s, and define X as the following multiplicative functional
XðsÞ ¼
YN�1

i¼0

Mi. ð8Þ
The formulation is then completed by showing that indeed (7) holds. This can be done following the lines of
the proof of Theorem 2.1.

The probabilistic formulations given in (5) or (7) do not immediately point to a physical picture as clear as
the one obtained by Feynman–Kac�s formula (2) in physical space. Nevertheless, the stochastic model (8) gives
a useful way of studying solutions in Fourier space and, in particular, is amenable to numerically estimate û.
Two techniques are used in this paper to achieve this, and can be illustrated with the derivations in the exam-
ple above. The first is direct Monte Carlo simulation of the expected value in (7). The second is more classical
and stems from understanding (4) as the fixed point equation ûðt; nÞ ¼ F ðû; t; nÞ, where F is the linear operator
given by the right-hand side of (4) on an appropriate Banach space. Provided that F is a contraction in the
norm of the space under consideration, a solution is given by û ¼ limn!1û

ðnÞ with ûðnþ1Þ ¼ F ðûðnÞ; t; nÞ,
n = 0,1,2, . . . (see [4] for more details). This latter method is referred to in this paper as Picard iteration.

A probabilistic formulation along the lines of the illustrative example (1) is available for a diverse class of
evolution equations, including reaction–diffusion, Schrödinger, Burgers and Navier–Stokes equations (see [5–
8]). In the seminal work of [9], the authors show that the Fourier transformed solution to the incompressible
Navier–Stokes equations in three dimensions satisfies an equation of the form of (7) with s having tree graph
structure. The branching at the vertices of s is produced by the quadratic nonlinearity in the PDE, very much
like the branching necessary for McKean�s solution to KPP equation in physical space (see [2]).

The stochastic process involved in the probabilistic representation of Navier–Stokes in Fourier space is dif-
ficult to model due to the three degrees of freedom in the frequencies assigned to the vertices of s. Fortunately,
the main features of the associated multiplicative random functional appear also in the probabilistic formu-
lation of the one-dimensional Burgers equation in Fourier space. The branching at the vertices of s is linked
to the nonlinear term common to both equations. The example of Burgers equation is worked out in detail in
Section 3.

In the probabilistic formulation for Burgers and the Navier–Stokes equations, the branching structure
requires that one specifies the probability distribution of the frequency of the offspring vertices given the fre-
quency of the parent vertex. In the case of the diffusion equation (1), where s has no branching, this distribu-
tion was a Dirac delta distribution. Admissible distributions are referred to as majorizing kernels, were studied
thoroughly in [10] for the case of incompressible Navier–Stokes equations. The authors also show how the
majorizing kernel can be used in establishing existence and regularity of solutions.

Although the theory and numerical schemes explored here are mathematically motivated, there is hope for
a physical intuitive picture for the branching stochastic model in the probability formulation of Burgers or
Navier–Stokes equations in Fourier space. The branching process s, together with the multipliers associated
to its vertices, is referred to as a stochastic cascade (see [5] and references therein). This name is appropriate,
especially when viewed in terms of Kolmogorov�s statistical theory of turbulence. Identifying the actual link
between the probabilistic formulation and Kolmogorov�s cascade is still a very important open problem. It is
conceivable that the majorizing kernels that determine the branching in s are related to the physical rates of
transport of energy between frequencies in turbulent flows. The numerical models reported in this paper are
simple tools that might help to shed light on this relationship.

The organization is as follows. The rest of this introduction settles down some terminology on the main
tools to be used, namely Fourier transform and tree graphs. The linear diffusion equation with potential
ut ¼
a2

2
uxx þ cðxÞu
is considered in Section 2, and Burgers equation
ut þ
ffiffiffiffiffiffi
2p

p
uux ¼ muxx þ f ðt; xÞ
is treated on Section 3.
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Some remarks on notation are in order. All partial differential equations are assumed to hold in the Sch-
wartz class of tempered distributions S0. The Fourier transform on S0 is defined through its action on test
functions as
/̂ðnÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

e�ixn/ðxÞ dx; n 2 R; / 2 C1
0 ðRÞ.
In the case of periodic distributions, the Fourier series representation is available,
u ¼ 1ffiffiffiffiffiffi
2p

p
X
k2Z

ûðkÞeikx; u 2 S0; u periodic. ð9Þ
Details on the construction of the Fourier transform on S0 and its properties can be found in [4] or [11].
Tree graphs are used in this paper as a suitable frame to define certain multiplicative processes, and only a

bit of special notation is required. A tree graph s is a connected graph of vertices with no cycles, and with
vertex set containing a unique root vertex coded as Æ0æ. The edges of a tree are determined by the relation ‘‘be-
longs to the offspring of’’. The nÆ0æ vertices in the offspring of Æ0æ are coded by Æ1æ, Æ2æ, . . ., ÆnÆ0ææ. The vertices of
second generation, i.e., the offspring of some Æiæ, are coded as Æi1æ, Æi2æ, . . ., ÆinÆiææ. Inductively, a vertex of the nth
generation of s has the form Ævæ = Æi1i2 . . . inæ, where ik is a positive integer for each k. For a vertex
Ævæ = Æi1i2 . . . inæits length is defined as |Ævæ| = n with the convention |Æ0æ| = 0. For j = 1,2, . . ., |Ævæ|, the jth level
of Ævæ is the vertex let Ævæ|j = Æi1, . . ., ijæ, Ævæ|0 = Æ0æ. The sequence {Ævæ|0, Ævæ|1, . . ., Ævæ} can be viewed as a path
connecting Æ0æ with Ævæ.

2. Linear diffusion equation

Consider the one-dimensional linear diffusion equation in (�1,1) with constant diffusion coefficient
1
2
a2 > 0, potential c = c(x) and initial condition u0 = u0(x),
utðtÞ ¼
a2

2
uxxðtÞ þ cuðtÞ; t > 0 uð0þÞ ¼ u0. ð10Þ
Assume that c and u0 have Fourier series with a finite number of terms, and that the Fourier coefficients of c
are all nonnegative. In particular, c and u0 are periodic and there exist finite sets of frequencies faigmc

i¼1 and
fbjg

mu
j¼1, such that
cðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Xmc

i¼1

ĉðaiÞeiaix; u0ðxÞ ¼
1ffiffiffiffiffiffi
2p

p
Xmu

j¼1

û0ðbjÞeibjx. ð11Þ
Assume furthermore that
ĉðaiÞ > 0; i ¼ 1; . . . ;mc; û0ðbjÞ 6¼ 0; j ¼ 1; . . . ;mu.
Take Fourier transform on both sides of Eq. (10) and use the integration factor e
a2

2
n2s to get
ûðt; nÞ ¼ e�
a2
2 n

2tû0ðnÞ þ
Z t

0

e�
a2
2 n

2s
Xmc

i¼1

ĉðaiÞûðt � s; n� aiÞ
( )

ds. ð12Þ
The integral equation (12) can readily be written as the expected value of some multiplicative process, how-
ever, for computational reasons described in (2.1), is more convenient to introduce an exponential factor
whose argument does not depend on n, for example e�t. Define
mðt; nÞ ¼ e�
a2
2 n

2tþt; m0ðt; nÞ ¼ mðt; nÞ
Xmc

i¼1

ĉðaiÞ ð13Þ
and write
ûðt; nÞ ¼ mðt; nÞe�tû0ðnÞ þ
Z t

0

e�sm0ðs; nÞ
Xmc

k¼1

ĉðakÞPmc
i¼1ĉðaiÞ

ûðt � s; n� aiÞ
� �

ds; ð14Þ
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The representation in (14) suggests the following stochastic model for û. For each t > 0, n 2 R, consider the
linear tree graph
sðt; nÞ ¼ fh0i; h1i; h11i; h111i; . . .g ¼ fh0i; h1i; h2i; h3i; . . .g
and let ðX;F;PnÞ be a probability space. To each vertex Æiæ associate a Fourier wavenumber (or type) nÆiæ and
a exponential random time SÆiæ with PðShii > sÞ ¼ e�s; s > 0. Equip the sequence of types fnhiig1i¼0 with a ran-
dom walk structure with mutually independent and identically distributed increments gÆi æ = nÆi+1æ � nÆiæ
satisfying
Pnðghii ¼ �akÞ ¼
ĉðakÞPmc
j¼1ĉðajÞ

; k ¼ 1; . . . ;mc. ð15Þ
Then Eq. (14) can be written as
ûðt; nÞ ¼ En 1½Sh0i>t�mðt; nÞû0ðnÞ þ 1½Sh0i6t�mðSh0i; nÞûðt � Sh0i; nþ gh0iÞ
n o

ð16Þ
hinting that û can be represented as the expected value of a random product. Define termination times by
T h0i ¼ t; T hiþ1i ¼ t � ðSh0i þ � � � þ ShiiÞ; i ¼ 0; 1; . . .
and let N = N(s(t,n)) = inf{i :SÆiæ > TÆiæ}. The random variable N gives the total number of vertices of s and
has a Poisson distribution with mean t, namely PðN ¼ nÞ ¼ 1

n!e
�ttn. Define the multiplicative functional

X(t, n) = X(s(t,n)) of the random collections fnhiigNi¼0, fShiigNi¼0 by:
Xðsðt; nÞÞ ¼
YN�1

i¼0

m0ðShii; nhiiÞ
 !

mðT hNi; nhNiÞû0ðnhNiÞ; ð17Þ
where for N = 0 the product in parenthesis is taken to be one. The following holds

Theorem 2.1. For t > 0, n = nÆ0æ,
ûðt; nÞ ¼ En Xðsðt; nÞÞ

is a solution to the integral equation (14).

Proof. The finiteness of the expected value has to be established first. Let r P
Pmc

i¼1ĉðakÞ, U P
maxfûðbjÞ; j ¼ 1; . . . ;mug, and note that for each n, m(t,n) 6 et and m 0(t,n) 6 ret. Then
EnXðsðt; nÞÞ 6 UetEn

YN�1

i¼0

reShii

( )
¼ Uet

X1
n¼0

tne�t

n!
rneSh0iþ���þShn�1i 6 Uet

X1
n¼0

tne�t

n!
rnet ¼ Uerðtþ1Þ.
Let t > 0, n = nÆ0æ. By the lack of memory of the exponential distribution, (17) can be written recursively as
Xðsðt; nÞÞ ¼
mðt; nh0iÞû0ðnh0iÞ if Sh0i > t;

m0ðSh0i; nh0iÞXðsðt � Sh0i; nh1iÞÞ if Sh0i 6 t.

(
ð18Þ
Use the mutual independence of SÆiæ and gÆiæ to get
EnXðt; nÞ ¼mðt; nÞû0ðnÞPðSh0i > tÞ þ En m0ðSh0i; nÞXðt � Sh0i; nþ gh0iÞ1½Sh0i6t�

n o
¼mðt; nÞe�tû0ðnÞ þ

Z t

0

e�sm0ðs; nÞEn Xðt � s; nþ gh0iÞjSh0i ¼ s
n o

ds

¼mðt; nÞe�tû0ðnÞ þ
Z t

0

e�sm0ðs; nÞEn Xðt � s; nþ gh0iÞjSh0i ¼ s
n o

ds

¼mðt; nÞe�tû0ðnÞ þ
Z t

0

e�sm0ðs; nÞ
Xmc

i¼1

ĉðakÞPmc
i¼1ĉðakÞ

EnXðt � s; n� aiÞ
� �

ds. �
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Heuristically, the underlying stochastic process can be thought of as a ‘‘construction’’ of s(t, n) as follows:
fix nÆ0 æ = n, generate SÆ0æ and compare its value to the termination time TÆ0æ = t. In the event [SÆ0æ > t] the tree
has no further vertices. If [SÆ0æ 6 t], the vertex Æ1æis created and it is assigned a random type nÆ1æ = nÆ0æ + gÆ0æ
(see Fig. 1). Repeat this process at Æ1æ, Æ2æ, . . . until no more new vertices arise. Assign the correct multipliers to
the N resulting nodes, and evaluate (17).
2.1. Modeling

As a first step, ûðt; nÞ is approximated by a Monte Carlo estimation of EXðsðt; nÞÞ given by Eq. (17). Let n
and t be fixed. The construction of s(t, n) can be modified in such a way that only realizations that contribute
to the mean of X(t, n) are preformed, i.e., realizations with û0ðnhNiÞ 6¼ 0. For this, condition the expected value
of (17) on nÆ0æ = n, N = n and nÆnæ = bj, to get
Fig. 1
X(t,n)
ûðt; nÞ ¼
Xmu

j¼1

X1
n¼0

En

Yn�1

i¼0

m0ðShii; nhiiÞ
" #

mðT hni; bjÞû0ðbjÞ
( )

e�ttn

n!
Pnðnhni ¼ bjÞ. ð19Þ
The Monte Carlo simulation of the expected value in Eq. (19) can be done as follows. For each t, n, and bj,
perform an appropriate number of random ‘‘backward walks’’ fnhiig0i¼n with nÆnæ = bj, nÆiæ = bj � gÆn � 1æ
� � � � � gÆiæ, i = n � 1, . . ., 0, and generate exponential times fShiign�1

i¼0 conditioned to [SÆ0æ + � � � + SÆn�1æ < t].
Then calculate the average of the product
Yn�1

i¼0

m0ðShii; nhiiÞ
" #

mðt � ðSh0i þ � � � þ ShniÞ; bjÞû0ðbjÞ
over all walks with nÆ0æ = n.
The probabilities Pnðnhni ¼ bjÞ, j = 1, . . .,mu, can be computed from the nth power of the transition prob-

ability matrix of the Markov process {nÆi æ = n + gÆ0æ + � � � + gÆi � 1æ}i P 1. The entries of this matrix are ob-
tained from (15).

Some remarks are in order. First, recall that the conditional distribution of (SÆ0æ, SÆ0æ + SÆ1æ, � � �,
SÆ0æ + � � � + SÆnæ) given [SÆ0æ + � � � + SÆnæ < t] is the same as the distribution of n increasingly ordered indepen-
dent random variables each having the uniform distribution on (0, t], (see [12] p. 280). Secondly, although the
. Diagram of a realization of a tree s for the diffusion equation with N = 3. The value of the multiplicative functional is
= m(SÆ0æ,nÆ0æ)m(SÆ1æ,nÆ1æ)m(SÆ2æ,nÆ2æ)m 0(TÆ3æ,nÆ3æ).
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summation over n in (19) is over all positive integers, the probability e�t tn

n! Pnðnhni ¼ bjÞ decreases to zero very
fast for moderate values of t, so only small trees have to be considered. For example, for values of t close to 1,
trees with N P 15 have probability of the order 10�8, and so their contribution to the mean can be neglected.

A Picard iteration of the integral equation (12) can be used to assess the accuracy of the Monte Carlo sim-
ulation and improve the results. Let ûð0Þ be the approximation of EkXðsðt; nÞÞ, and for n P 0, define
ûðnþ1Þðt; nÞ ¼ e�
a2
2 n

2tûðnÞ0 ðnÞ þ
Z t

0

e�
a2
2 n

2s
Xmc

i¼1

ĉðaiÞ ûðnÞðt � s; n� aiÞ
( )

ds; ð20Þ
a sequence in the space of almost everywhere bounded functions L1ðRÞ. A solution to the diffusion equation in
Fourier space is a fixed point of Eq. (20), and the error of the nth approximation to the solution can be mea-
sured by
En ¼
kûðnþ1Þ � ûðnÞk1

kûðnÞk1
.

Crucial to the algorithm presented here is the introduction of the multipliers in (13). Previous attempts using
random times SÆiæ with frequency-dependent mean and time-independent multipliers m(n), led to very unstable
and non-convergent simulations (S. Dobson, E. Thomann, personal communication). This problem is cor-
rected by the definition of m(n, t) used here.

2.2. Example

Consider Eq. (10) with data cðxÞ ¼ cos x, u0ðxÞ ¼ sin x. The problem in Fourier space is
ûtðt; nÞ ¼ � a2

2
n2ûðt; nÞ þ 1

2
ðd1 þ d�1Þ � ûðt; nÞ; û0ðnÞ ¼

1

2
ðd1 � d�1Þ. ð21Þ
Only trees (walks) with nÆNæ = ±1 have to be constructed, and the solution is expected to be an odd function.
The number of generated walks of length N for each finishing should be large enough so all accessible values of
nÆ0æ are well sampled, and the values of the aggregates SÆ0æ,SÆ0æ + S1, . . .,SÆ0æ + � � � + SN�1 exhibit a good
approximation to a uniform distribution on (0, t]. A simple heuristic rule is, for each N and t, to generate
a number of trees proportional to Nt. The error for this particular example showed little change for values
of the constant of proportionality over 1000, so this value was used. The iterates of (20) were computed
for 10 equally spaced time points in [0,1], and the integration in time was performed with a simple trapezoidal
rule. A comparison between the consecutive iterates n = 0,1 and n = 4,5 is shown in Figs. 2 and 3. The
observed errors listed below indicate a linear rate of convergence.
n
 0
 1
 2
 3
 4
 5

En
 6.7 · 10�3
 5.9 · 10�4
 1.6 · 10�4
 7.0 · 10�5
 1.6 · 10�5
 3.2 · 10�6
3. Viscous Burgers equation

Consider the viscous Burgers equation in T ¼ ½0; 1Þ with periodic initial condition u0 = u0(x), periodic forc-
ing term f = f(t, x), periodic boundary conditions, and viscosity m > 0,
utðtÞ þ
ffiffiffiffiffiffi
2p

p
uðtÞuxðtÞ ¼ muxxðtÞ þ f ; t > 0;

uð0þ; xÞ ¼ u0ðxÞ; uðt; 0Þ ¼ uðt; 1Þ.
ð22Þ
A solution to Eq. (22) will remain periodic for t > 0, and therefore one has Fourier series representations for
u0, f, and u, with coefficients û0ðk; tÞ, f̂ ðk; tÞ and ûðk; tÞ, respectively, k 2 Z.

Write uux ¼ 1
2
ðu2Þx and take Fourier transform of both sides of (22). Use the integrator factor emk

2s, and mul-
tiply and divide by mk2 inside the resulting integral, then
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Fig. 2. Comparison between ûð0Þ ¼ EnX (dots) and ûð1Þ (lines) for the diffusion equation with data given by (21).
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ûðt; kÞ ¼ û0ðkÞe�mk2t þ
Z t

0

mk2e�mk2s 1

2

1

im
û � ûðt � s; kÞ

k
þ 1

2

2f̂ ðt � s; kÞ
mk2

" #
ds. ð23Þ
Now, make the following change of variables
ŵðt; kÞ ¼ 1

im
ûðt; kÞ; ŵ0ðkÞ ¼ ŵð0; kÞ; ĝðt; kÞ ¼ 2f̂ ðt; kÞ

im2k2
. ð24Þ
Then ŵ satisfies the following equation
ŵðt; kÞ ¼ ŵ0ðkÞe�mk2t þ
Z t

0

mk2e�mk2s 1

2

ŵ � ŵðt � s; kÞ
k

þ 1

2
ĝðt � s; kÞ

� �
ds; ð25Þ
where the convolution ŵ � ŵ is to be understood over Z as
ŵ � ŵðt � s; kÞ ¼
X
j2Z

ŵðt � s; jÞŵðt � s; k � jÞ. ð26Þ
The form of (25) is similar to that of (12), and the initial structure of the appropriate stochastic process can be
guessed. Let SÆ0æ be an exponentially distributed random variable of parameter mk2, and let cÆ0æ be a fair coin
tossing with values in {0,1}. Eq. (25) can be written as
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Fig. 3. Comparison between ûð4Þ (dots) and ûð5Þ (lines) for the diffusion equation with data given by (21).
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ŵðt; kÞ ¼ E 1½Sh0i>t�ŵ0ðkÞ þ 1½Sh0i6t� ch0i
ŵ � ŵðt � Sh0i; kÞ

k
þ ð1� ch0iÞĝðt � Sh0i; kÞ

� �� �
. ð27Þ
Note that if a discrete probability density function on j 2 Z is introduced in the summation (26), the convo-
lution could be interpreted (for each k) as an average of products of ŵ evaluated at random frequencies. The
problem of finding such a density appears whenever stochastic cascades are used to solve partial differential
equations in Fourier space, and is linked to the more general problem of establishing existence and regularity
of solutions. In the more general case of the Navier–Stokes equations, the characterization of admissible den-
sities for the frequencies of offspring vertices was solved with the introduction of ‘‘majorizing kernels’’ in
[10,13,14].

It follows from Eq. (26) that any function decreasing as oðj�
1
2Þ can be used to give a full probabilistic rep-

resentation of (25). This will provide the existence of solutions without restrictions on the support of û0 and f̂ .
Some attempts to numerically model this problem have been made by S. Dobson, E. Thomann, A. Chorin A.
and P. Stinis (personal communications).

Here the simplest possible probabilistic representation of the convolution (26) is used through the following
assumption:
there exists K > 0 such that f̂ ðt; kÞ ¼ û0ðkÞ ¼ 0 for all k < K. ð28Þ
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It is due to a theorem of F. and M. Riesz (see [15, p. 335]) that property (28) implies that f and u0 belong to the
Hardy space H1, namely, the Banach space of functions with holomorphic extension to the unit disc with the
norm
kf kHp ¼ lim
r!1

1

2p

Z p

�p
jf ðr eihj dh

� �1
p

.

Assume (28) holds and let JÆ0æ be a uniformly distributed random variable taking values in {K, . . .,k � K}, then
ŵ � ŵðt; kÞ ¼
0; K 6 k < 2K;

ðk � 2K þ 1Þ E ŵðt; J h0iÞŵðt; k � J h0iÞ
� �

; k P 2K.

�

Denote pÆ0æ = (k � 2K + 1)�1, and write Eq. (27) as
ŵðt; kÞ ¼ E 1½Sh0i>t�ŵ0ðkÞ þ 1½Sh0i6t� ch0i
1

ph0ik
ŵðt� Sh0i; J h0iÞŵðt� Sh0i; k � J h0iÞ þ ð1� ch0iÞĝðt� Sh0i; kÞ

" #( )
1½kP2K�

þ E 1½Sh0i>t�ŵ0ðkÞ þ 1½Sh0i6t�
1

2ph0ik
ĝðt� Sh0i; kÞ

" #( )
1½k<2K�.

ð29Þ
From the construction of the appropriate stochastic process associated to (27), it will follow that ŵðt; kÞ sat-
isfies (28) for all t > 0.

For k > 0 and t > 0 consider a binary tree s = s(t, k) with a particle of type k assigned to its root vertex Æ0æ.
Let ðX;F;PkÞ be a probability space. Define a vertex-indexed stochastic process {kÆv æ}Ævæ 2 s with kÆ0æ = k, sat-
isfying the conservation rule
khvi ¼ khv1i þ khv2i; hvi 2 s; ð30Þ
and with increments kÆv1æ � kÆvæ = JÆvæ conditionally distributed as,
PkðJ hvi ¼ jjkhvi; chviÞ ¼
1

khvi � 2K þ 1
1½khviP2K�1½chvi¼1� :¼ phvi. ð31Þ
Let cÆvæ be fair coin tosses taking values on {0,1}. Introduce ‘‘waiting times’’ SÆvæ with conditional exponential
distributions given by
PkðShvi > s j khviÞ ¼ e�mk2hvis; s > 0.
Finally, for Ævæ2s, define termination times as
T hvi ¼ t �
Xjhvij�1

j¼0

Shvijj; T h0i ¼ t; ð32Þ
where |Ævæ| and Ævæ|j are defined in Section 1.
A multiplicative functional of {kÆvæ,SÆvæ,cÆvæ}Ævæ 2 s related to ŵ can now be constructed in a similar way as in

Section 2. Consider
Xðsðt; kÞÞ ¼ Xðt; kÞ ¼
Y
hvi2s

M hvi ð33Þ
with multipliers given by
M hvi ¼

ŵ0ðkhviÞ if Shvi > T hvi;

1
2
ĝðT hvi; khviÞ if khvi < 2K; Shvi 6 T hvi;

ĝðT hvi; khviÞ if khvi P 2K; Shvi 6 T hvi; chvi ¼ 0;

1
khviphvi

if khvi P 2K; Shvi 6 T hvi; chvi ¼ 1.

8>>>>><
>>>>>:

ð34Þ
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Then the following holds:

Theorem 3.1. Assume f̂ ðt; kÞ ¼ û0ðkÞ ¼ 0 for all k < K, and that there is a P 0 such that jû0ðkÞj 6 me�ak,

jf̂ ðt; kÞj 6 m2k2
2 e�ak for k P K,t > 0. Then Burgers equation (22) has a unique solution û. Moreover,
ûðt; kÞ ¼ 0; k < K and jûðt; kÞj 6 me�ak; k P K; t > 0;
and ûðt; kÞ is explicitly given by
ûðt; kÞ ¼ im EkXðsðt; kÞÞ.
Proof. The bounds on û and f̂ combined with (24), and the definition of pÆvæ give the following bound for the
random product in (34),
Xðt; kÞ 6 exp �a
X

hvi2snsB

khvi

( ) Y
hvi2sB

khvi � 2K þ 1

khvi
;

where sB is the set of vertices where branching occurs, namely,
sB ¼ fhvi 2 s : khvi P 2K or Shvi 6 T hvi or chvi ¼ 1g.
Since a P 0 and 0 < K 6 kÆvæ, then jEkXðsðt; kÞÞj < 1. Moreover, the conservation rule (30) givesP
hvi2Lkhvi ¼ k, so the estimate for jûðt; kÞj holds and ûðt; kÞ ¼ 0 for k < K. Due to the Markovian character

of the waiting times SÆvæ, and the mutual independence between cÆvæ and JÆvæ, the following recursive represen-
tation of X is available,
Xðsðt; kh0iÞÞ ¼

ŵ0ðkh0iÞ if Sh0i > T h0i;
1
2
ĝðT h0i; kh0iÞ if kh0i < 2k0; Sh0i 6 T h0i;

ĝðT h0i; kh0iÞ if kh0i P 2K; Sh0i 6 T h0i; ch0i ¼ 0;
1

kh0iph0i
XðsðT h0i; kh1iÞÞXðsðT h0i; kh2iÞÞ if kh0i P 2K; Sh0i 6 T h0i; ch0i ¼ 1;

8>>><
>>>:

ð35Þ
Conditioning on the cases of (35) gives that EkXðsðt; kÞÞ satisfies Eq. (23). h
3.1. Modeling

Because of the binary tree structure of s, conditioning on the frequencies at the terminating vertices does not
simplify the computation of X(s) as it did for the example in Section 2. Here, the realizations of the multipli-
cative functional can be done constructing trees from the root vertex following Eq. (35) (see Fig. 4). The root
particle of type kÆ0æ = k holds for the exponential time SÆ0æ which is compared to TÆ0 æ = t. If [SÆ0æ > t], then no
further vertices are used. If [SÆ0æ < t] occurs, a coin cÆ0æ is tossed. In the event cÆ0æ = 0, again the construction
stops. If cÆ0æ = 1, branching occurs, and the new vertices Æ1æ and Æ2æ are created with random types kÆ1æ = JÆ0æ
and kÆ2æ = kÆ0æ � JÆ0æ, respectively. The same process is followed independently with trees rooted in Æ1æ and
Æ2æ. Whenever a vertex Ævæ has type kÆvæ < 2K, then SÆvæ is compared to the respective termination time but no
coin is tossed, and no branching occurs. The multipliers are then assigned to the vertices according to (34).

The integral equation (23) can be used to test the error in any numerical estimation of the expected value in
Theorem 3.1. Define ûð0Þ to be the approximation provided by Monte Carlo algorithm, and define the follow-
ing iterates:
ûðnþ1Þðt; kÞ ¼ û0ðkÞe�mk2t þ
Z t

0

mk2e�mk2s ûðnÞ � ûðnÞðt � s; kÞ
2imk

þ f̂ ðt � s; kÞ
mk2

" #
ds. ð36Þ
The sequence fûðnÞgnP0 forms a Picard iteration of which the solution û is a fixed point. The error at each term
can be measured with
En ¼
kûðnþ1Þ � ûðnÞk1

kûðnÞk1
.



Fig. 4. Diagram of a realization of a tree s for Burgers equation with N = 3. The value of the multiplicative functional is Xðt; kÞ ¼
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3.2. Example

Consider the Fourier transformed Burgers equation with data given by
û0ðkÞ ¼ im; f̂ ðt; kÞ ¼ im2k2

2
ð1� tÞ2; t 2 ð0; 1Þ; k P 1. ð37Þ
By Theorem 3.1, ûðt; kÞ ¼ imEk Xðsðt; kÞÞ is the unique solution to this equation. A numerical approximation to
û was calculated for k = 1, . . ., 8 and 10 discrete time points in [0,1]. The number of computed realizations of
X(s) was proportional to t for frequencies kÆ0æ < 2K, and proportional to (t + k � 2K) for frequencies
kÆ0æ P 2K. The proportionality constant used was 3000. Some terms of the sequence fûðnÞg defined by (36) were
calculated using a simple trapezoidal rule for the integration on time. A comparison between the complex
norm of the consecutive iterates for n = 0,1 and n = 4,5 is shown in Figs. 5 and 6. The observed errors, as
defined by (3.1), are listed below.
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4. Concluding remarks

Monte Carlo techniques are developed to model the random multiplicative cascades associated with two
partial differential equations: linear diffusion and viscous Burgers equation. The Fourier transformed solution
of the PDE is written as the expected value of a random aggregate of its main components, i.e., initial con-
dition, nonlinear terms and forcing terms. These aggregates are evaluated at random frequencies nÆvæ (or kÆvæ),
and random times SÆvæ, indexed by Ævæ2s, where s has a tree structure. The choice on the distributions of nÆvæ
and SÆv æ determine the limitations and scope of the multiplicative cascade representation.

Exponential waiting times SÆvæ with parameter dependent on kÆvæ arose naturally in both examples presented
here (see Eqs. (12) and (23)). Computational stability considerations led to the removal of this dependence for
the case of the diffusion equation. The exponential distribution has the advantage of giving Markov structure
to the resulting stochastic process (see proof of Theorem 2.1), and it also simplifies the numerical modeling.
Multiplicative cascade representations using distributions for the waiting times different than exponential are
considered in [14].

In the examples presented here, the transition distributions for the frequency process {nÆvæ}Ævæ2s are chosen
so both the analytical and the modeling problem are considerably simplified. This selection imposes restric-
tions on the PDE�s data for which a multiplicative cascade representation gives a solution. There is however,
no ‘‘physical’’ reason behind the choices made here. The identification of processes {nÆv æ}Ævæ2s that correspond
with the physical situations the partial differential equations arise from is still unexplored. Simulations such as
those presented here can be used to study the relationship between this processes in frequency space, and
known qualitative features of the solutions.
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